轉(zhuǎn)動(dòng)慣量(Moment of Inertia)是剛體繞軸轉(zhuǎn)動(dòng)時(shí)慣性(回轉(zhuǎn)物體保持其勻速圓周運(yùn)動(dòng)或靜止的特性)的量度,用字母I或J表示。轉(zhuǎn)動(dòng)慣量在旋轉(zhuǎn)動(dòng)力學(xué)中的角色相當(dāng)于線性動(dòng)力學(xué)中的質(zhì)量,可形式地理解為一個(gè)物體對(duì)于旋轉(zhuǎn)運(yùn)動(dòng)的慣性,用于建立角動(dòng)量、角速度、力矩和角加速度等數(shù)個(gè)量之間的關(guān)系。
轉(zhuǎn)動(dòng)慣量(Moment of Inertia)是剛體轉(zhuǎn)動(dòng)時(shí)慣性的量度,其量值取決于物體的形狀、質(zhì)量分布及轉(zhuǎn)軸的位置。剛體的轉(zhuǎn)動(dòng)慣量有著重要的物理意義,在科學(xué)實(shí)驗(yàn)、工程技術(shù)、航天、電力、機(jī)械、儀表等工業(yè)領(lǐng)域也是一個(gè)重要參量。電磁系儀表的指示系統(tǒng),因線圈的轉(zhuǎn)動(dòng)慣量不同,可分別用于測(cè)量微小電流(檢流計(jì))或電量(沖擊電流計(jì))。在發(fā)動(dòng)機(jī)葉片、飛輪、陀螺以及人造衛(wèi)星的外形設(shè)計(jì)上,精確地測(cè)定轉(zhuǎn)動(dòng)慣量,都是十分必要的。
對(duì)于質(zhì)量分布均勻,外形不復(fù)雜的物體可以從它的外形尺寸的質(zhì)量分布用公式計(jì)算出相對(duì)于某一確定轉(zhuǎn)軸的轉(zhuǎn)動(dòng)慣量。對(duì)于幾何形狀簡(jiǎn)單、質(zhì)量分布均勻的剛體可以直接用公式計(jì)算出它相對(duì)于某一確定轉(zhuǎn)軸的轉(zhuǎn)動(dòng)慣量。而對(duì)于外形復(fù)雜和質(zhì)量分布不均勻的物體只能通過(guò)實(shí)驗(yàn)的方法來(lái)精確地測(cè)定物體的轉(zhuǎn)動(dòng)慣量,因而實(shí)驗(yàn)方法就顯得更為重要。
Moment of Inertia剛體繞軸轉(zhuǎn)動(dòng)慣性的度量。其數(shù)值為J=∑ mi*ri^2,式中mi表示剛體的某個(gè)質(zhì)點(diǎn)的質(zhì)量,ri表示該質(zhì)點(diǎn)到轉(zhuǎn)軸的垂直距離。